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Abstract Elastic contact between a non-ideal Berkovich

indenter and a half-space is investigated. The derived

mathematical model of the contact allows for tangential

displacements of the boundary points of the half-space. The

tip of the blunted indenter is simulated as a smooth surface.

The boundary element method is implemented in the model

for numerical simulation of nanoindentation. The relative

deviation function is introduced and calculated to quantify

the influence of the tangential displacements on the load–

displacement curves. A simple expression is derived for the

impact of the tangential displacements on the values of the

reduced Young’s modulus determined due to nanoinden-

tation studies. The refined model was successfully applied

to simulate the experimental load–displacement curves

gained by elastic nanoindentations of flat LiF and KCl

samples. Such values of the indenter bluntness (the varying

parameter) were found that the simulated load–displace-

ment curves coincided with those of the experimental data

at displacements higher than 7.5 nm. The model neglecting

tangential displacements gives slightly differing values for

the parameter of the indenter bluntness.

List of symbols

O, x1, x2, x3 Cartesian coordinate system

M, N Points on the plane x3 = 0

RMN Distance between points M(x1, x2) and

N(n, g)

r Distance between point M and the origin

O, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1 þ x2

2

p

h Displacement of the indenter

f(x1, x2) Gap between the indenter and the specimen

before deformation

c Angle between Ox3 and O0E, depends on

the position of M (see Fig. 1)

R Radius describing the shape of the blunted

indenter tip, depends on the position of M

b Indenter parameter, b = cot 65.3� = 0.46

d Bluntness of the indenter tip

rc Distance between the origin O and the

contour of the orthogonal projection of the

bluntness to the plane x3 = 0

S Orthogonal projection of the contact region

on the plane x3 = 0 after deformation

X An arbitrary area in the plane x3 = 0

containing the contact region

vðMÞ; M 2 X Unknown function in the integral boundary

equation

P Force applied to the indenter in the direction

normal to the flat surface of the specimen

P0(h) Dimensionless compression force

Ei; ti Young’s modulus and Poisson’s ratio

respectively of the diamond indenter

Es; ts Young’s modulus and Poisson’s ratio

respectively of the sample

K(M, N) Kernel of the integral operator

e e ¼ 1
2
� 1�2ts

1�ts
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Introduction

Indentation is a widely used tool in the study of mechanical

properties of materials, such as hardness H and elastic

modulus E on the micro- and millimeter scales. For the

analysis of material on the smaller scale a nanoindentation

technique has been developed. However, the results gained

by the nanoindentation test are more complicated to

interpret. A number of factors have to be taken into

account, since they are highly relevant on the nanometer

scale. These can be the roughness of contacting surfaces,

non-planar surface of samples, non-ideal shape of inden-

ters, etc. Therefore, a more careful examination of exactly

what these effects cause on the interpretation of nanoin-

dentation is required.

In respect to development of its mathematical model,

indentation is a subject of the contact mechanics. Hertz [1]

presented the first theory of mechanical contact more than a

century ago. It is restricted to frictionless contact between

elastic bodies and smooth surfaces. Hertz considered only

the normal displacements on the surface of solids. However,

it is known [2, 3] that the Hertzian formulation of the

contact problem causes incompatibility of strains in the area

around the contact. It was shown in [2] that the mentioned

incompatibility of strains depends strongly on whether the

formulation of the contact problem takes into account the

free tangential displacements on the contact surfaces. Thus,

eliminating the tangential displacements leads to an

approximate solution which possesses the specified unnat-

ural property. Therefore, accounting for the tangential

displacements demands a particular investigation.

A two-dimensional (2D) elastic contact problem in a

refined formulation was studied analytically in different

works [4–7]. Brock considered self-similar elasto-dynamic

indentations of a half-plane by a rigid wedge [4]. Similar to

Brock, Georgiadis investigated a static indentation of an

elastic half-plane by a rigid wedge [5]. Both authors

concluded that a singularity in the contact stress at the wedge

apex did not occur after accounting for tangential displace-

ments. However, the boundary integral equation method was

suggested for more general and difficult contact problems

[5]. Soldatenkov derived a more common solution supposing

a rigid symmetric punch [6, 7]. Anyway, the solution of

three-dimensional (3D) contact problems is in general more

difficult than the solution of 2D problems, because no single

mathematical apparatus analogous to the theory of functions

of a complex variable in the 2D case exists for handling 3D

problems. Thus, 3D problems require a special approach and

the application of new mathematical tools.

The tangential displacements in the 3D elastic contact

problem were firstly accounted for in the works of Galanov

[2, 8] and later in the works of Argatov [9, 10]. Argatov

gave a closed-form approximate solution for a contact of a

punch shaped like a paraboloid of revolution. Galanov

obtained numerical solutions for the contact of a punch

shaped like a regular square pyramid, like a cone or like a

paraboloid of revolution. He found out that the value of the

tangential displacements at the boundary of the contact

region could achieve approximately 22% of the indentation

depth depending on the Poisson’s ratio of the elastic half-

space. The incompatibility of strains in the area around the

contact was observed in each case.

Galanov investigated ideal indenters in his studies. We

would consider indenters having some deviations from

their nominal shapes, like the blunted tips. The allowance

for the bluntness of the indenter tip leads to a more precise

formulation of the contact problem, because the deviation

of the indenter tip from its nominal geometry is known to

be the most significant source of uncertainty in nanoin-

dentation measurements [11]. Some uncertainties in

nanoindentation measurements, which are sometimes

attributed to properties of the material, can be explained

and quantitatively described by properly accounting for

geometric deviation of the indenter tip [12]. So, the

Fig. 1 a Geometry of the

simulated blunted indenter,

BCDE, and of the ideal

Berkovich indenter, O0DE. The

segment BD is the arc of the

circle with the centre A and

radius R; d is the bluntness of

the indenter tip. OB is the

displacement of the indenter,

which causes the contact BC
with the sample. b Cross-section

of the simulated blunted

indenter. The contour lines

correspond to various positions

of D
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approach used by Galanov in [2, 3, 8] is applied in the

present work to solve the refined 3D contact problem,

which accounts for both the tangential displacements on

the contact surface and for the bluntness of the indenter tip.

The model derived in the paper concerns an especially

important case of shallow indentation (usually less than

100 nm) where the tip bluntness is on the same order as the

indentation depth. We consider the indentation of half-

spaced samples by the widely used Berkovich indenter. A

rigid indenter (a punch) is assumed. Therefore, there are

elastic tangential displacements only on the surface of the

sample. The other hypotheses of the Hertzian formulation

remain without changes. The method of non-linear integral

boundary equations (NIBEs) is applied to formulate the

problem [13, 14]. The numerical solution of NIBEs is

carried out by means of the boundary element method.

The analysis of nanoindentation by an ideal Berkovich

indenter or by the bluntness of a non-ideal Berkovich

indenter is a complicated problem itself, since the axi-sym-

metric Galin–Sneddon solution is invalid in this case [15].

However, fundamental relations for general 3D schemes of

nanoindentation by indenters of non-ideal shapes were

derived [12], where the indenter shape near the tip was

approximated by homogeneous functions. It was shown, that

degrees of the shape functions for blunted indenters vary

between 1 (cone or pyramid) and 2 (elliptic paraboloid tip).

Therefore, an approximation of the indenter bluntness by the

homogeneous functions with the degree 2 is used in the

present study, in order to derive a numerical solution for

the load–displacement curves of nanoindentation.

The mathematical model presented in this work is for-

mulated in a dimensionless form. This has two advantages.

First, the model is valid both for elastic micro- and macro-

contacts. Second, the simulation of nanoindentation data

becomes more convenient, since the results of numerical

solutions of the dimensionless problem can be easily

rescaled to match conditions of a real experiment.

The influence of tangential displacements on the load-

displacement curves is theoretically investigated in the first

part of the paper. The refined model is verified in the

second part, where the bluntness of a diamond Berkovich

indenter is determined based on the results of nanoinden-

tations of half-spaced LiF and KCl samples.

Model equations

We use the mathematical model of a unilateral contact

between the Berkovich rigid indenter and an elastic half-

space (sample). The indenter with the equation of the sur-

face x3 ¼ �f ðx1; x2Þ is pressed by the force P to a boundary

of the contacting sample (see Fig. 1a). The sample is con-

sidered as a positive half-space x3� 0: The origin O of

Cartesian coordinates, x1, x2, and x3, is put at the single

point of the initial contact between the indenter and the

sample. The contact region S is an orthogonal projection of

the contact between the sample and the lateral surface of the

indenter on the plane x3 = 0 after deformation.

Figure 1b demonstrates that the indenter cross-sectional

area is not axi-symmetric. The bluntness of the Berkovich

indenter is modeled in the same way as in our previous

paper [16] in which arcs of different curvature form the

surface of the bluntness. All these arcs lie in the planes

containing the axis Ox3. Before deformation, the bottom

end of each arc coincides with the origin O in such a way,

that the surface of the bluntness is smooth in the vicinity of

the origin O. The upper end of each arc lies on the surface

of the Berkovich indenter, so that a smooth transition from

the blunted shape ðr � rcÞ to the pyramidal one (r [ rc)

occurs. The distance, rc, is that between the origin, O, and

the projection of the upper ends of the arcs to the plane

x3 = 0, i.e., rc defines the contour of the orthogonal pro-

jection of the bluntness to the plane x3 = 0. The condition

of the smooth transition yields the relations [16]:

rc ¼ R � cos c;

R ¼ d � sin c
1� sin c

;
ð1Þ

where, R is the radius describing the shape of the blunted

indenter, as shown in Fig. 1 and d is the bluntness of the

indenter tip. Let us introduce the function sðMÞ �
sðx1; x2Þ ¼ sin c

1�sin c ; where (x1, x2) are the coordinates of the

point M lying on the plane x3 = 0. Since c lies in the range

[65.3�; 77.05�] (see Fig. 1 in [12]), then s(x1, x2) ranges

from 9.93 to 38.3, respectively.

The set of NIBEs [13, 14] (with an unknown function

vðMÞ; M 2 X; and displacement h) is applied to formulate

the model:

lv�ðMÞþk
Z Z

X

KðM;NÞvþðNÞdSN ¼h� f ðMÞ; M;N 2X;

Z Z

X

vþðNÞdSN ¼P;l; k[0: ð2Þ

Here vþðMÞ ¼ sup vðMÞ; 0f g is the contact pressure and

v�ðMÞ ¼ inf vðMÞ; 0f g: The function ð�lv�ðMÞÞ defines

the gap between the indenter and the specimen after

deformation and l is an arbitrary positive parameter. The

indenter is rigid, so k is defined only by the elastic constants

of the sample k ¼ 1�t2
s

pEs
: For the region X we further assume

X ¼ fM: h [ f ðMÞg: The kernel K(M, N) of the integral

operator in (2) accounts for the normal (in the direction Ox3)

and for the tangential (in the plane x3 = 0) displacements of

the half-space on the contact surface. If only the blunted

shape of the indenter is contacting, then (see (14)):
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KðM; NÞ ¼ 1

RMN
� e

R
� x

2
1 þ x2

2 � x1nþ x2gð Þ
R2

MN

ð3Þ

where (x1, x2) and (n, g) are the coordinates of the points M

and N lying on the plane x3 ¼ 0; 2e ¼ 1�2ts

1�ts
: The first term

in (3) corresponds to the normal displacements of the

contact surface. The second one allows for the tangential

displacements on the contact surface, which are induced by

the surface of the bluntness.

As mentioned in the introduction, we consider the case

of shallow indentation, i.e., the contact between the

bluntness of an indenter and a sample. This contact occurs

if the contact region S ¼ M: vðMÞ � 0f g � X lies within

the orthogonal projection of the bluntness to the plane

x3 = 0, that is M: vðMÞ� 0f g � M: r � rcf g: As follows

from Fig. 1, this condition is satisfied if h \ d. Indeed, let

us define rcontact as the distance between the origin O and

the contour of the contact region S. As is seen from Fig. 1,

rcontact\
ffiffiffiffiffiffiffiffi

2hR
p

: According to (1) rc ¼ R cos c: Then,

rcontact

rc
\

ffiffiffiffiffiffi

2hR
p

R cos c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2h
d�sðx1;x2Þ�cos2 c

q

�
ffiffiffiffiffiffiffiffiffiffiffiffi

2
1:92
� h

d

q

�
ffiffi

h
d

q

:

On the assumption of r� rc one has the following

expression for the function f(M):

f ðMÞ ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2
p

: ð4Þ

However, if h \ d, then r
R

� �2	 1: Therefore the

function in (4) can be approximated as:

f ðMÞ ¼ r2

2R
: ð5Þ

The function f(M) in (2) and defined further in (5) is not

the paraboloid as in the Hertzian problem, since R depends

on M accordingly to (1).

Before starting the numerical calculations, the system

(2) is reformulated in a dimensionless form (see Appendix

B). The derivation of the final formula for the load–dis-

placement diagram:

P ¼
ffiffiffiffiffi

2d
p

k
� P0ðhÞ � h3=2 ð6Þ

is also given in Appendix B. To obtain the function P0(h),

the numerical solution of the set in (15) at different values

of the mutual approach h is necessary.

Results and discussion

Influence of tangential displacements on the load–

displacement curves

The tangential displacements influence the load–displace-

ment curves (6) only via the dimensionless compression

force P0(h). Therefore, it is enough to consider this

function to comprehend the relations between tangential

displacements and the indentation behavior of different

materials.

As can be seen from (15), the equation used for deter-

mination of the dimensionless contact pressure U? and

therefore of P0(h) includes the displacement h, the

parameter of the indenter bluntness d and the Poisson’s

ratio ts of the sample material. Moreover, all these quan-

tities are included only in the term which accounts for

tangential displacements. Hence, the influence of the

properties of the sample being indented on the value arising

tangential displacements is determined by the Poisson’s

ratio of the sample material ts and does not depend on its

Young’s modulus.

If ts = 0.5 (e = 0 for a perfectly incompressible mate-

rial) then the term accounting for the tangential

displacements in (15) is zero and tangential displacements

do not arise during indentation. This result is well-known

from the literature [17]. In this case the function P0(h) does

not depend on the displacement h. Its value P0 is deter-

mined by the shape of the indenter. The resulting load P in

(6) is proportional to h3=2:

Otherwise, if ts \ 0.5 (e[ 0), then tangential dis-

placements occur and the relation e �
ffiffi

h
d

q

determines their

magnitude. The resulting load P is no longer proportional

to h3=2:

To quantify the effect of tangential displacements on the

load-displacement curves, the set (15) was solved numer-

ically and the function P0(h) obtained at various values of

the Poisson’s ratio ðts ¼ 0� 0:5Þ of the sample material.

The solution for P0(h) is given in Fig. 2a. The black points

correspond to the numerical solutions. Fitting the data set

in Fig. 2a by P0ðhÞ ¼ P0 þ b � h
d

� �v
yields the curves with

parameters that are listed in Table 1.1 The dimensionless

compression force, P0(h) at ts = 0.5 is P0 = 1.277 and

obtained by the numerical solution of (15). Therefore, the

dependences of P0(h) and P(h) on the displacement h can

be approximated by:

P0ðhÞ � P0 þ bðtsÞ �
ffiffiffi

h

d

r

;

PðhÞ �
ffiffiffiffiffi

2d
p

k
� P0 � h3=2 þ

ffiffiffi

2
p

k
� bðtsÞ � h2;

ð7Þ

where b(ts) is a function depending on the Poisson’s ratio

of the sample material, b(0.5) = 0.

Parameter k in the second equation of (7) can be also

defined through the reduced Young’s modulus E* [15]:

1 The dimensionless compression force P0 is calculated using

equation (15). As it is seen, the displacement h and the bluntness d
are included in (15) as h/d. Therefore, the solution of (15), P0, is also

a function of h/d.
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k ¼ 1

pE

;

1

E

¼ 1� t2

s

Es

þ 1� t2
i

Ei

:

Therefore any knowledge concerning E* are directly

applicable in (7). For example, in order to extend (7) to

elastically anisotropic solids, one may use approximations

of the reduced modulus [18, 19].

It should be noted, that if the tangential displacements in

the model are neglected, then the dimensionless compres-

sion force is P0(h) = P0 = 1.277, regardless of the value

of Poisson’s ratio ts. Neglecting tangential displacements

one gets smaller values for the dimensionless compression

force and consequently a smaller value of the load com-

pared to the values calculated when accounting for

tangential displacements. The deviation of the dimension-

less compression force (7) is bðtsÞ �
ffiffi

h
d

q

and the deviation

of the load (6) is DP �
ffiffi

2
p

k � bðtsÞ � h2: Hence, the load

discrepancy growth is approximately quadratic as the dis-

placement increases.

Let us introduce the relative deviation of the load deter-

mination dev ¼ PðhÞ � Pno TDðhÞð Þ=PðhÞ; which occurs if

tangential displacements are not considered. Accordingly to

(7) the relative deviation can be estimated as:

dev ¼ PðhÞ � Pno TDðhÞ
PðhÞ �

bðtsÞ �
ffiffi

h
d

q

1:277þ bðtsÞ �
ffiffi

h
d

q ; ð8Þ

where P(h) is the load calculated according to (6) with

allowance for tangential displacements; Pno TDðhÞ is the

load calculated accordingly to (6) with the constant value

of P0 = 1.277, i.e., without the allowance for tangential

displacements (further the model neglecting tangential

displacements). The dependence of the relative deviation

function (8) on the dimensionless displacement of the

indenter is shown in Fig. 2b for various values of Poisson’s

ratio ts of the sample material. The deviation function

grows if the indentation depth increases. Depending on the

Poisson’s ratio, the relative deviation function can achieve

almost 5% at the depth comparable with the value of the

parameter of the indenter bluntness.

The influence of the tangential displacements on the solu-

tion of (15) can be well demonstrated by a visualization of the

profile of the deformed surface of the sample. The profiles

represented in Fig. 3a correspond to the cross-section con-

taining Ox1 and Ox3, whereas those represented in Fig. 3b

correspond to the cross-section containing Ox2 and Ox3 (see

Fig. 1). To maximize the tangential displacements we applied

ts = 0 in calculations of the profiles. The dashed lines show

the profile of the surface before deformation. Figure 3 reveals

a considerable incompatibility of strains after deformation

(i.e., penetration of elastic half-space into the punch) for the

solution ignoring the tangential displacements. However, the

Fig. 2 a Dimensionless compression force as a function of the

indenter displacement for the samples with different Poisson’s ratios.

b The relative deviation of the load determination, see (8), indicates

the influence of the tangential displacements on the determination of

the load at a given displacement. The indenter geometry assumed for

the numerical simulations is defined by function (5), which coincides

with the simulated shape of the blunted indenter at least at h \ d

Table 1 The values of the parameters b and v which yield the best-fit

of the dimensionless compression force (black points in Fig. 2a) by

the function P0 þ b � h=d

� �v

ts 102 � b 10 � v

0 6.17 ± 0.08 5.41 ± 0.02

0.1 5.56 ± 0.08 5.37 ± 0.03

0.2 4.63 ± 0.07 5.32 ± 0.03

0.3 3.38 ± 0.05 5.34 ± 0.02

0.4 2.03 ± 0.05 5 ± 0.03

0.5 0 0
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incompatibility of strains significantly decreases, if the solu-

tion of (15) accounts for the tangential displacements. As

results from (16), tangential displacements reach a maximum

value at the boundary of the contact region. If h = d, then the

maximum value of tangential displacements amounts to 21%

of the indentation depth.

Effect of tangential displacements

on the nanoindentation study of the reduced

Young’s modulus

The Oliver–Pharr method is a commonly used technique for

processing the nanoindentation data [20, 21]. The reduced

Young’s modulus is determined from the contact stiffness S

and the projected contact area A using the Bulychev–

Alekhin–Shorshorov (BAS) relation [15, 20, 22]:

S ¼ 2b

ffiffiffi

p
p E


ffiffiffi

A
p

where b* (‘‘*’’ is applied to distinguish from the indenter

parameter b) is a constant that depends on the geometry of

the indenter. The BAS relation neglects the tangential

displacements. We can derive from the second equation in

(7) a refined relation for the contact stiffness STD that

accounts for the tangential displacements:

STD ¼
dPðhÞ

dh

�
ffiffiffi

2
p

pE
 � 3

2
�
ffiffiffi

d
p
� P0 � h1=2 þ 2 � bðtsÞ � h

� �

: ð9Þ

Tangential displacements influence the reduced modulus

E* by means of the contact stiffness only because the

contact area is not explicitly presented in (9). The effect of

tangential displacements is associated with the second term

in (9). Therefore, the contact stiffness that neglects the

tangential displacements is:

Sno TD ¼
dPðhÞ

dh
� 3

2

ffiffiffi

2
p

pE
 �
ffiffiffi

d
p
� P0 � h1=2: ð10Þ

Let E
TD denotes the reduced modulus determined with

allowance for the tangential displacements (9) and E
no TD

denotes the modulus determined neglecting them (10).

Relation between E
TD and E
no TD can be found from the

comparison of STD with Sno TD. The contact stiffness is

evaluated at the beginning of unloading h = hmax [20]. We

should also account for the final displacement hf after

complete unloading [20]. Thus we set h ¼ hmax � hf to

compare the contact stiffness in (9) and (10):

E
TD

E
no TD

¼
3
2
�
ffiffiffi

d
p
� P0 � ðhmax � hfÞ1=2

3
2
�
ffiffiffi

d
p
� P0 � ðhmax � hfÞ1=2 þ 2 � bðtsÞ � ðhmax � hfÞ

� 1� 4

3
� bðtsÞ

P0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hmax � hf

d

r

� 1� bðtsÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hmax � hf

d

r

Here we used that bðtsÞ 	 P0 ¼ 1:277: The model is

developed for a rigid indenter. Therefore, the effect of

tangential displacements on determination of the Young’s

modulus and of the reduced Young’s modulus is the

same:

Es;TD

Es;no TD

¼ E
TD

E
no TD

� 1� bðtsÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hmax � hf

d

r

: ð11Þ

Furthermore, we investigate the case of shallow

indentation, hmax � d: Therefore if hf 	 hmax then (11)

reduces to:

Es;TD

Es;no TD

¼ E
TD

E
no TD

� 1� bðtsÞ: ð12Þ

As follows from (11) and (12), the models neglecting

tangential displacements overestimate the reduced and the

Young’s modules. For a wide range of materials the error

in determination of the elastic modulus is about 4% (see

Fig. 3 Profiles of the surfaces of the rigid non-ideal Berkovich

indenter and of the deformed elastic half-space at displacement

h = d. A considerable incompatibility of strains occurs if the

formulation of the contact problem (2) omits the tangential displace-

ments (‘‘without TD’’). The profile derived applying the solution of

the refined contact problem experiences a negligible incompatibility

of strains (‘‘with TD’’). a Cross-section containing Ox1 and Ox3.

b Cross-section containing Ox2 and Ox3 (see Fig. 1)
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Table 1). For materials with the Poisson’s ratio less than

0.2 the error approaches to 6%.

A difficulty of the Oliver–Pharr method is the estimation

of the contact area [22, 23]. To avoid this, we propose to

find the unknown parameters (d or E
 ¼ 1=pk) by fitting

the function P(h) in (7) to the elastic part of the indentation

curves. Corresponding examples are given below.

Application of the refined model to the analysis

of experimental load-displacement curves

A number of numerical simulations are carried out in order

to interpret the experimental results on elastic nanoinden-

tation of LiF and KCl single crystals [(001) fresh cleavage

planes] by a Berkovich indenter. The goal is to find the

parameter of bluntness d of the indenter tip, using both the

model accounting for the tangential displacements and the

model neglecting them. The nanoindentation measure-

ments were carried out with the same blunted Berkovich

diamond indenter using the Nano Indenter-II nanohardness

tester (MTS Systems Inc., Oak Ridge, USA). The loading

and unloading phases of indentation were carried out under

load control. At maximum load, a dwell period of 10 s was

imposed before unloading, and another dwell period of

30 s at 80% of unloading, to correct for thermal drift in the

system. The Young’s modulus of the diamond indenter is

1143 GPa and the Poisson’s ratio is 0.072.

The LiF single crystal was manufactured by LOMO

(Leningrad Optical-Mechanical Amalgamation), located in

St. Petersburg, Russia. The total level of impurities was

less than 100 ppm. The KCl single crystal was manufac-

tured at the Institute for Single Crystals at National

Academy of Scientists of Ukraine, located in Kharkov. It

had less than 1 ppm impurities.

Typical plots of nanoindentation of the LiF and KCl

specimens in logarithmic coordinates are shown in Fig. 4.

The curves indicate the experimental data. We plot only

loading curves, since the nanoindentations are elastic at

displacements up to 30 nm ðlogðhÞ� 1:5Þ; i.e., loading and

unloading curves are congruent. As will be seen from the

results of the simulations, the condition h \ d is satisfied.

For our simulations we have put for LiF the Young’s

modulus 114 GPa and the Poisson’s ratio 0.2. For KCl we

have put the Young’s modulus 24.1 GPa and the Poisson’s

ratio 0.29. The condition of the model, Es=Ei 	 1; is

fulfilled for both samples. Hence, the tangential displace-

ments of the diamond indenter can be neglected as

compared with those of the samples. The black points in

Fig. 4 denote the simulations, which account for tangential

displacements (with TD), whereas the open circles corre-

spond to the simulations, which neglect tangential

displacements (without TD). The values of the bluntness d

corresponding to the simulations are summarized in

Table 2.

Fitting of the experimental data shown in Fig. 4 is done

as follows. For a given displacement hi within the interval

0–25 nm, we find such a parameter of the indenter blunt-

ness di, that the numerically determined load P(hi) at

d = di matches the experimental load at the given dis-

placement hi with an accuracy higher than 0.5%. In this

way, a set of bluntness values is produced each of which

corresponds to a certain displacement. For the fitting we

use a set of displacements, which cover the interval of

displacements 0–25 nm with a step-size of about 2.5 nm.

The set of values of the indenter bluntness versus the set of

displacements is plotted in Fig. 5. The diagrams do not

contradict the fact that the bluntness is a fixed geometric

parameter. We simply use the bluntness as a natural fit

Fig. 4 Load–displacement diagrams for (a) LiF and (b) KCl in

logarithmic coordinates. The curves show the experimental data for

elastic indentation. The black points indicate the simulations by

means of the refined model whereas the open circles are obtained

using the model neglecting tangential displacements
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parameter. Figure 5 gives an understanding of how good

the models fit the experimental data and whether the

models are acceptable for practical implementation. If the

models describe the nanoindentation by the blunted

indenter realistically, then the evaluated values of the

indenter bluntness di should be about the same, regardless

of displacements. As indicated in Fig. 5, the dependence of

evaluated bluntness on displacements is different in two

regions: the first one corresponds to displacements smaller

than 5 nm (indentation of LiF) or 7.5 nm (indentation of

KCl); the second region corresponds to displacements

higher than those mentioned above. The evaluated blunt-

ness depends strongly on the displacements in the first

region. The value of the bluntness grows abruptly in this

region, as displacement decreases. This is the reason, why

the simulated load–displacement points do not match the

experimental curves in the region of small displacements,

as seen in Fig. 4. We suppose that the surface (5) chosen in

the models does not properly approximate the geometry of

the real indenter tip at small displacements. However, the

evaluated bluntness remains approximately constant in the

second region, if the model used accounts for tangential

displacements (filled circles in Fig. 5). If the model used

neglects tangential displacements (open circles in Fig. 5),

then the growth of the evaluated bluntness occurs in the

second region. This growth is especially evident for KCl,

see Fig. 5b. So, the refined model describes nanoindenta-

tion qualitatively much better in the second region than the

model neglecting them. Comparing to the refined model,

the model neglecting tangential displacements yields

higher values of the indenter bluntness. The values of the

evaluated indenter bluntness averaged over the second

region are used for the simulations of the experimental

load–displacement curves in Fig. 4. These averaged values

are summarized in Table 2.

Influence of tangential displacements on the simulated

load–displacement curves is clearly demonstrated in Fig. 6.

The curves denote the simulations of nanoindentation of LiF

and KCl by the blunted Berkovich indenter by means of

the refined model. The values of the bluntness used for

the simulations are taken from the column ‘‘with TD’’ in

Table 2, with respect to the sample. The open circles cor-

respond to simulations, which neglect tangential

displacements. The values of the bluntness used are the same

as above. As seen from Fig. 6, by neglecting tangential

displacements the simulated values of load are underesti-

mated. The relative deviation of the load determination

dev ¼ ðPðhÞ � Pno TDðhÞÞ=PðhÞ is also plotted (dashed).

The diagrams given in Fig. 5 should be constructed for

each experiment on elastic nanoindentation in order to

determine the limit displacement (like 5–7 nm for the

present nanoindentations). The models derived in the paper

are valid at displacements larger than the limit displace-

ment. The results at smaller indentations imply that the

indenter could be a bit flatter at the tip. To verify this

assumption, the bluntness should be approximated by a

homogeneous function with the degree higher than 2.

Table 2 The values of the bluntness d of the indenter tip, which are

used for the simulations of the experimental load–displacement

curves obtained from the nanoindentation of LiF and KCl samples by

Berkovich indenter

Sample d(nm), with TD d(nm), without TD Deviation (%)

LiF 31.7 33.4 5.1

KCl 31.5 32.9 4.3

Fig. 5 Determination of the indenter bluntness by the pointwise

fitting of the experimental load-displacement curves for (a) LiF and

(b) KCl (see Fig. 4). The filled circles indicate the simulations by

means of the refined model whereas the open circles are obtained

using the model neglecting tangential displacements
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Another possibility to improve predictions of the models at

small displacements is the allowance for the local rough-

ness of the indenter. Effect of the roughness on the elastic

indentation is given in [17, pp. 419–420]. Johnson defines

parameter a = r/h, where r is the standard deviation of

surface height distribution: ‘‘… the Hertz theory of smooth

surfaces can be used with only a few per cent error pro-

vided the parameter a is less than about 0.05, …’’. One

could also derive theoretically the influence of parameter a
on the contact pressure and on the contact area, like

Johnson did for the Hertzian problem. However, it is not

necessary, if one can construct diagrams like that in Fig. 5.

These diagrams demonstrate that approximation of smooth

surfaces is valid at least at displacements larger than the

limit displacement. Thus, accounting for the local rough-

ness of the contact surfaces or increasing the degree of the

shape function could improve the model for predictions at

displacements smaller than the limit displacement. In other

words, the limit displacement can be decreased. However,

it always exists, because the models derived are the con-

tinuum models.

Conclusions

The frictionless shallow indentation of an elastic half-space

(sample) by the rigid Berkovich indenter of non-ideal

shape is investigated. The formulation does not neglect the

tangential surface displacements, coupling them with the

normal surface displacements. The derived mathematical

model of the elastic contact is based on a set of non-linear

integral boundary equations.

The dependence of the load on the indenter displace-

ments consists of two terms. The first term is caused by the

normal surface displacements and is proportional to h3=2:

The second term results from the tangential displacements

and is approximately proportional to h2. This second term

vanishes if Poisson’s ratio of the sample approaches 0.5.

The value of the second term can achieve 5% of the total

load, at displacements of the indenter comparable with the

value of the parameter of the indenter bluntness. We pro-

vide also a simple expression for the impact of the

tangential displacements on nanoindentation studies of the

reduced Young’s modulus.

The model was successfully applied to determine the

bluntness parameter of a Berkovich indenter. For this

purpose we analyzed the nanoindentation experiments on

samples of LiF and KCl produced by this indenter. It was

shown that the tangential displacements often ignored

could be falsely interpreted as the use of a slightly blunter

indenter. The values of the bluntness parameter obtained

were different (depending on the investigated sample) if

the applied model neglected the tangential displacements.

However, the model allowing for the tangential displace-

ments yielded about the same values of the indenter

bluntness independent of the measured sample.

Appendix A

Accordingly to [8] the nonlinear boundary integral equa-

tion of the contact problem accounting for tangential

displacements is:

Fig. 6 Simulations of the nanoindentation of (a) LiF and (b) KCl

samples by the blunted Berkovich indenter. The curves are obtained

by means of the refined model. The open circles correspond to the

model neglecting tangential displacements. Both models assume the

same parameter of the indenter bluntness: 31.7 nm for LiF and

31.5 nm for KCl (see Table 2). The relative deviation function is

shown as the dashed curve
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lv�ðMÞþk
Z Z

X

vþðNÞ
RMN

dSN¼h� f x1þuðMÞ; x2þw Mð Þð Þ;

Mðx1; x2Þ;Nðn; gÞ2X: ð13Þ

Here u(M) and w(M) are the tangential displacements in

point M in the directions Ox1 and Ox2 respectively, v?(M)

is the contact pressure. We assume that these displacements

are small compared to the dimensions of the contact region.

In this case the function f ðx1þuðMÞ; x2þwðMÞÞ from

Eq. 13 can be approximated by:

f ðx1 þ uðMÞ; x2 þ wðMÞÞ

¼ ðx1 þ uðMÞÞ2 þ ðx2 þ wðMÞÞ2

2Rðx1 þ uðMÞ; x2 þ wðMÞÞ

� f ðMÞ þ x1 � uðMÞ þ x2 � wðMÞ
RðMÞ ;

where f(M) is defined in (5). We denote further R(M) as R.

The tangential displacements induced by the surface of

the bluntness can be introduced as [24]:

uðMÞ ¼ �ke
ZZ

X

vþðNÞ � ðx1 � nÞ
R2

MN

dSN ;

wðMÞ ¼ �ke
ZZ

X

vþðNÞ � ðx2 � gÞ
R2

MN

dSN :

Therefore,

f x1 þ uðMÞ; x2 þ wðMÞð Þ

� f ðMÞ � ke
R

ZZ

X

x2
1 þ x2

2 � x1n� x2g

R2
MN

vþðNÞdSN :

and Eq (13) allowing for the tangential displacements can

be written as

lv�ðMÞ þ k
ZZ

X

1

RMN

� 1� e
R
� x

2
1 þ x2

2 � ðx1nþ x2gÞ
RMN

� 	

vþðNÞdSN

¼ h� f ðMÞ; Mðx1; x2Þ; Nðn; gÞ 2 X: ð14Þ

In the present formulation of the contact problem the

magnitude of the radius R depends on the position of the

point M.

Appendix B

Let us formulate the problem (2) in a dimensionless coordinate

system xi ¼
ffiffiffiffiffiffiffiffi

2hd
p

x0i and also introduce the dimensionless

unknown function Uðx01; x02Þ ¼ k �
ffiffiffiffiffiffiffiffiffiffi

2d=h
p

� vðx1; x2Þ: We

then write the NBIEs (2) in the following dimensionless form:

U�ðM0Þ

þ
ZZ

X0

1

RM0N0

1�
ffiffiffiffiffi

2h

d

r

� e
sðx01; x02Þ

� x
2
01 þ x2

02 � ðx01n0 þ x02g0Þ
RM0N0

" #

�

UþðN0ÞdSN0

¼ 1� x2
01 þ x2

02

sðx01; x02Þ
;

ZZ

X0

UþðN0ÞdSN0
¼ P0ðhÞ; M0;N0 2 X0; ð15Þ

where M0 and N0 are the points on the plane x03 = 0 with

the coordinates (x01, x02) and ðn0; g0Þ respectively. P0(h) is

the dimensionless compression force. The square X0 ¼
M0: x01j j � 6; x02j j � 6f g is an image of the square X after

changing variables. The value 6 is chosen in order that

the square X0 includes the contact region S0 ¼
M0 : UðM0Þ� 0f g � X0: Similarly, the dimensionless

tangential displacements are given by:

u0ðM0Þ ¼ �e

ffiffiffiffiffi

h

2d

r

�
ZZ

X0

UþðN0Þ � ðx01 � n0Þ
R2

M0N0

dSN0
;

w0ðM0Þ ¼ �e

ffiffiffiffiffi

h

2d

r

�
ZZ

X0

UþðN0Þ � ðx02 � g0Þ
R2

M0N0

dSN0
: ð16Þ

The final formula for constructing the P(h) diagram for

the approach of the indenter and the sample can be

obtained by substituting the second equation in (15) into

the second equation in (2)

P ¼
ffiffiffiffiffi

2d
p

k
� P0ðhÞ � h3=2: ð17Þ

The collocation method is used for the discretization of

(15). The integrals are approximated by the rectangle

formula. To solve the discretized equation the generalized

Newton’s method is applied.

The region X0 is divided into 1024 equal pieces (i.e.

1089 nodes). Numerical simulations show that the gen-

eralized Newton’s method converges to the exact solution

of the discretized form of the first equation in (15) usually

after five iterations at the discrepancy for each node of

1 9 10-5.

Before starting the numerical simulations, the solution

of the NBIEs (15) was compared with that one of the

Hertzian problem. For this purpose we assume sðx1; x2Þ ¼
const ¼ 1 and ts = 0.5. In this case:
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P ¼
ffiffiffiffiffiffi

2R
p

k
� P0 hð Þ � h3=2:

holds for the compressive force P (see (17)). The solution

of the dimensionless NBIEs (15) yields P0ðhÞ ¼ const ¼
0:3� 2 � 10�4: Let us compare with the Hertzian problem

[17, 24]:

P ¼ 2
ffiffiffi

2
p

3p
�
ffiffiffiffiffiffi

2R
p

k
� h3=2;

where 2
ffiffi

2
p

3p � 0:30011:
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